ここで勉強すれば数学検定1級の壁は超えられるか。

MENU
数学検定1級の壁 TOP  >  数検1級の極限  >  nの階乗を含んだ無限級数(極限7)

nの階乗を含んだ無限級数(極限7)


n=1n2n!

 

 

の値を求める。

 

 

 

 

n=01n!=1+11!+12!+13!++1n!+=e

 

 

 

n=1nn!=n=11(n1)!=e

 

 

この公式を使って

 

 

=n=1n2n!=n=1(n(n1)n!+nn!)

 

 

=n=21(n2)!+n=11(n1)!=e+e=2e

 

 

 

2e・・・答え

 

 

 

同じカテゴリー「数検1級の極限」の一覧

Tanを含む式の極限値(極限15)

    [math]\lim _{x\rightarrow +0}\left( \dfrac {\tan x}{x}\right) ^{\dfrac {1}{x^{2}}}[/ma […]

記事の続きを読む

分母にkの階乗を含む式の無限級数(極限14)

  k=1k3k! を求める。           […]

記事の続きを読む

部分分解してから極限値(極限13)

      ①では、1n2(n+1)2 を部分分解する。   ②では[ma […]

記事の続きを読む

3乗根を含んだ無限級数(極限12)

  次の級数が収束するような実数xの値の範囲を求める。   [math]\sum ^{\infty }_{n=1}\dfrac {3^{n}}{\sqrt [3] {n}}x^{n […]

記事の続きを読む

はさみこみで極限値を求める(極限11)

  を初項117、公差ー6の等差数列の初項から第n項までの和とします。このとき、次の極限値を求める。           [math]\lim _{x\r […]

記事の続きを読む

Copyright© 2025 数学検定1級の壁

ページトップ