
aは定数である確率密度
[math]f\left( x\right) =a\left( x-x^{3}\right) \left( 0\leqq x\leqq 1\right)[/math]
[math]f\left( x\right) =0[/math] [math] ( x <0),(x > 1)[/math]
とする。
(1)
[math]\int f\left( x\right) dx=\int ^{1}_{0}a\left( x-x^{3}\right) dx=a\left[ \dfrac {x^{2}}{2}-\dfrac {x^{4}}{4}\right] ^{1}_{0}=\dfrac {a}{4}=1[/math]
[math]a=4[/math]・・・(1)の答え
(2)
[math]\begin{aligned}E\left[ X\right] =\int xf\left( x\right) dx=4\left[ \dfrac {x^{3}}{3}-\dfrac {x^{5}}{5}\right] ^{1}_{0}=\dfrac {8}{15}\\ .\end{aligned}[/math]
[math]E\left[ X^{2}\right] =\int x^{2}f\left( x\right) dx=4\left[ \dfrac {x^{4}}{4}-\dfrac {x^{6}}{6}\right] ^{1}_{0}=\dfrac {1}{3}[/math]
[math]V\left[ X\right] =E\left[ X^{2}\right] -\left( E\left[ X\right] \right) ^{2}=\dfrac {1}{3}-\dfrac {64}{225}=\dfrac {11}{225}[/math]
[math]\dfrac {11}{225}[/math] ・・・(2)の答え
同じカテゴリー「数検1級の統計」の一覧
確率変数Xの確率密度関数f(x)が [math]f\left( x\right) =\begin{cases}\dfrac {3}{4}\left( ax-x […]
確率変数Xが平均30、分散100の正規分布に従うとき、P(23≦X≦48)の値を表の値(表は省略)を用いて計算します。 ただし、表は確率変数 Z が平均0、分散1の正規分布 […]
2つのサイコロ(立方体の形をしている) A,Bがあります。 Aのサイコロには、-4,-2,0,2,4,6 Bのサイコロには、-8,-5,2,4,5,8 の数字が書かれていま […]
[math]f\left( x\right) =\begin{cases}e^{-x}\left( x\geqq 0\right) \\ 0 \left( x <0\right) […]
10本のくじの中に当たりくじが2本あります。この中からランダムにくじを1本引き、当たりくじならば、そこで終了し、当たりくじがでないなら、そのくじを元に戻し、もう一度10本のくじの中からラ […]