ここで勉強すれば数学検定1級の壁は超えられるか。

MENU
数学検定1級の壁 TOP  >  数検1級の整数論  >  整数論8の解説

整数論8の解説

 

 

 

726x(mod27)

 

 

この方程式を解く

 

 

 

7と27はお互いに素なので

 

 

 

オイラーの定理が成り立つ。

 

 

オイラー数は

 

ϕ(27)ϕ(33)32(31)18になる。

 

 

したがって

 

 

7181(mod27)  

 

 

 

この問題のxは

 

 

7267187878494(5)4252(2)24(mod27)

 

 

 

・・・答え

 

 

 

同じカテゴリー「数検1級の整数論」の一覧

最高累乗指数(整数16)

  実数xに対して[x] はxを超えない最大整数を表す。   n を自然数とする。 n!に含まれる素因数 pの最高累乗指数は &n […]

記事の続きを読む

整数論15の解説

      1003312877 を約分してもっとも簡単な分数で表す。       &nbs […]

記事の続きを読む

整数論14の解説

  152010を128で割った余りを正の数で求める。             [math]1 5 […]

記事の続きを読む

整数論13の解説

    正の整数x,yに対して  331=x3y3    を満たすx […]

記事の続きを読む

整数論12の解説

  232323  の1の位の数字を求める。             [math]23^{1 […]

記事の続きを読む

Copyright© 2025 数学検定1級の壁

ページトップ