
[math]f\left( x,y\right) =\left( 1-y^{2}\right) \tan ^{-1}\left( x+y\right)[/math] とおくと
[math]\dfrac {\partial f}{\partial x}\left( x,y\right) =\left( 1-y^{2}\right) \dfrac {1}{\left( x+y\right) ^{2}+1}[/math]
[math]\dfrac {\partial ^{2}f}{\partial x^{2}}\left( x,y\right) =\left( 1-y^{2}\right) \dfrac {-2\left( x+y\right) }{\left( \left( x+y\right) ^{2}+1\right) ^{2}}[/math]
[math]\begin{aligned}\dfrac {\partial ^{3}f}{\partial x^{2}\partial y}\left( x,y\right) =\left( -2y\right) \dfrac {-2\left( x+y\right) }{\left( \left( x+y\right) ^{2}+1\right) ^{2}} +\left( 1-y^{2}\right) \dfrac {-2}{\left( \left( x+y\right) ^{2}+1\right) ^{2}}+\left( 1-y^{2}\right) \dfrac {8\left( x+y\right) ^{2}}{\left( \left( x+y\right) ^{2}+1\right) ^{3}}\end{aligned}[/math]
この式に
[math]x=\dfrac {1}{2},y=\dfrac {1}{2}[/math]を代入すると
[math]\dfrac {\partial ^{3}f}{\partial x^{2}\partial y}\left( \dfrac {1}{2},\dfrac {1}{2}\right) =\left( -1\right) \cdot \dfrac {-2}{\left( 1^{2}+1\right) ^{2}}[/math]
[math]+\left( 1-\dfrac {1}{4}\right) \dfrac {-2}{\left( 1^{2}+1\right) ^{2}}+\left( 1-\dfrac {1}{4}\right) \dfrac {8}{\left( 1^{2}+1\right) ^{3}}[/math]
[math]=\dfrac {1}{2}-\dfrac {3}{8}+\dfrac {3}{4}=\dfrac {7}{8}[/math]・・・答え
同じカテゴリー「数検1級の微分」の一覧
2変数のマクローリンの定理 [math]Df=\left( h\dfrac{\partial }{\partial x}+k\dfrac{\partial }{\parti […]
[math]x^{2}+y^{2}+z^{2}+2x+2y+2z=0[/math] のとき [math]\dfrac {\partial ^{2}z}{\partial ^ […]
[math]w=\log _{e}\left( x^{2}+y^{2}+z^{2}\right)[/math] に対して、 [math]\dfrac {\pa […]
曲線 [math]z=\tan ^{-1}\dfrac {y}{x}[/math]([math]x\neq 0[/math])は [math]( -\dfrac {\pi }{2}< […]