[math]x^{2}+y^{2}+z^{2}+2x+2y+2z=0[/math] のとき
[math]\dfrac {\partial ^{2}z}{\partial ^{2}x^{2}}+\dfrac {\partial ^{2}z}{\partial ^{2}y^{2}}[/math] をzの式で表す。
[math]x^{2}+y^{2}+z^{2}+2x+2y+2z=0[/math]をxで偏微分して2で割ると
[math]x+z\dfrac {\partial z}{\partial x}+1+\dfrac {\partial z}{\partial x}=0[/math]・・・①
式を変形すると
[math]\dfrac {\partial z}{\partial x}=-\dfrac {x+1}{z+1}[/math]・・・②
①の式を再度xで偏微分すると
[math]1+z\dfrac {\partial z}{\partial x}+\left( z+1\right) \dfrac {\partial ^{2}z}{\partial x^{2}}=0[/math]・・・③
同様に[math]\dfrac {\partial ^{2}z}{\partial ^{2}x^{2}}+\dfrac {\partial ^{2}z}{\partial ^{2}y^{2}}[/math] をyで偏微分すると
[math]y+z\dfrac {\partial z}{\partial y}+1+\dfrac {\partial z}{\partial y}=0[/math]・・・④
④を変形すると
[math]\dfrac {\partial z}{\partial y}=-\dfrac {y+1}{z+1}[/math]・・・⑤
④の式を再度yで偏微分すると
[math]1+\left( \dfrac {\partial z}{\partial y}\right) ^{2}+\left( z+1\right) \dfrac {\partial ^{2}z}{\partial y^{2}}=0[/math]・・・⑥
③+⑥より
[math]2+\left( \dfrac {\partial z}{\partial x}\right) ^{2}+\left( \dfrac {\partial z}{\partial y}\right) ^{2}+\left( z+1\right) \left( \dfrac {\partial ^{2}z}{\partial x^{2}}+\dfrac {\partial ^{2}z}{\partial y^{2}}\right)=0[/math]
式変形して
[math]\left( z+1\right) \left( \dfrac {\partial ^{2}z}{\partial x^{2}}+\dfrac {\partial ^{2}z}{\partial y^{2}}\right) =-2-\left( \dfrac {\partial z}{\partial x}\right) ^{2}-\left( \dfrac {\partial z}{\partial y}\right) ^{2}[/math]・・・⑦
②と⑤を使って
[math]\left( \dfrac {\partial z}{\partial x}\right) ^{2}+\left( \dfrac {\partial z}{\partial y}\right) ^{2}=\dfrac {x^{2}+y^{2}+2x+2y+2}{\left( z+1\right) ^{2}}=-\dfrac {z^{2}+2z-2}{\left( z+1\right) ^{2}}[/math]・・・⑧
⑧を⑦に代入して
[math]\dfrac {\partial ^{2}z}{\partial x^{2}}+\dfrac {\partial ^{2}z}{\partial y^{2}}=-\dfrac {z^{2}+2z+4}{\left( z+1\right) ^{3}}[/math]・・・答え
別解
[math]x^{2}+y^{2}+z^{2}+2x+2y+2z=0[/math] を変形して
[math]z^{2}+2z+\left( x^{2}+y^{2}+2x+2y\right) =0[/math]
2次方程式の解の公式より
[math]z=-1\pm \sqrt {1-x^{2}-y^{2}-2x-2y}[/math]・・・①
[math]\dfrac {\partial z}{\partial x}=\pm \dfrac {1}{2}\cdot \dfrac {-2x-2}{\sqrt {1-x^{2}-y^{2}-2x-2y}}=\pm \dfrac {-x-1}{\sqrt {1-x^{2}-y^{2}-2x-2y}}[/math]
[math]\dfrac {\partial ^{2}z}{\partial x^{2}}=\pm \left\{ \dfrac {-1}{\sqrt {1-x^{2}-y^{2}-2x-2y}}-\dfrac {1}{2}\cdot \dfrac {\left( -x-1\right) (-2x-2)}{\left( \sqrt {1-x^{2}-y^{2}-2x-2y}\right)^{3} }\right\}[/math]
[math]=\pm \dfrac {-\left( 1-x^{2}-y^{2}-2x-2y\right) -\left( x^{2}+2x+1\right) }{\left( \sqrt {1-x^{2}-y^{2}-2x-2y}\right) ^{3}}[/math]
[math]=\pm \dfrac {-\left( 2-y^{2}-2y\right) }{\sqrt {\left( 1-x^{2}-y^{2}-2x-2y\right) }^{3}}[/math]
同様に
[math]\dfrac {\partial z^{2}}{\partial y^{2}}=\pm \dfrac {-\left( 2-x^{2}-2x\right) }{\left( \sqrt {1-x^{2}-y^{2}-2x-2y}\right) ^{3}}[/math]
[math]\dfrac {\partial ^{2}z}{\partial x^{2}}+\dfrac {\partial ^{2}z}{dy^{2}}=\pm \dfrac {-\left( 4-x^{2}-y^{2}-2x-2y\right) }{\left( \sqrt {1-x^{2}-y^{2}-2x-2y}\right) ^{3}}[/math]
ここで①より
[math]z+1=\pm \sqrt {1-x^{2}-y^{2}-2x-2y}[/math]
[math]\left( z+1\right) ^{2}=1-x^{2}-y^{2}-2x-2y[/math]
[math]\left( z+1\right) ^{3}=\left( \sqrt {1-x^{2}-y^{2}-2x-2y}\right) ^{3}[/math]
したがって
[math]\dfrac {\partial ^{2}z}{\partial x^{2}}+\dfrac {\partial ^{2}z}{\partial y^{2}}=\dfrac {-\left( 3+\left( z+1\right) ^{2}\right) }{\left( z+1\right) ^{3}}=-\dfrac {z^{2}+2z+4}{\left( z+1\right) ^{3}}[/math]
[math]-\dfrac {z^{2}+2z+4}{\left( z+1\right) ^{3}}[/math]・・・答え
同じカテゴリー「数検1級の微分」の一覧
2変数のマクローリンの定理 [math]Df=\left( h\dfrac{\partial }{\partial x}+k\dfrac{\partial }{\parti […]
[math]x^{2}+y^{2}+z^{2}+2x+2y+2z=0[/math] のとき [math]\dfrac {\partial ^{2}z}{\partial ^ […]
[math]w=\log _{e}\left( x^{2}+y^{2}+z^{2}\right)[/math] に対して、 [math]\dfrac {\pa […]
曲線 [math]z=\tan ^{-1}\dfrac {y}{x}[/math]([math]x\neq 0[/math])は [math]( -\dfrac {\pi }{2}< […]