ここで勉強すれば数学検定1級の壁は超えられるか。

MENU
数学検定1級の壁 TOP  >  数検1級の微分  >  微分1の解説(媒介変数で表示された第2次導関数)

微分1の解説(媒介変数で表示された第2次導関数)

[math]\begin{aligned}\dfrac {d^{2}y}{dx^{2}}=\dfrac {d}{dx}\left( \dfrac {dy}{dx}\right) =\dfrac {d}{d\theta }\left( \dfrac {y'\left( \theta \right) }{x'\left( \theta \right) }\right) \cdot \dfrac {1}{x'\left( \theta \right) }\end{aligned}[/math]
 

上記の式を使って答えを計算する。

 

 

 

[math]\begin{aligned}\dfrac {dx}{d\theta}=\cos \theta\end{aligned}[/math]
 
 

[math]\begin{aligned}\dfrac {dy}{d\theta }=\dfrac {\dfrac {1}{\cos ^{2}\theta }}{2\tan \dfrac {\theta }{2}}+\sin \theta \\ =\dfrac {1}{2\sin \dfrac {\theta }{2}\cos \dfrac {\theta }{2}}+\sin \theta \end{aligned}[/math]

 

 
[math]\begin{aligned}\dfrac {dy}{dx}=\dfrac {1}{\cos \theta }\left( \sin \theta -\dfrac {1}{\sin \theta }\right) \\ =\dfrac {1}{\cos \theta }\left( \dfrac {\sin ^{2}\theta -1}{\sin \theta }\right) \end{aligned}[/math]
 

 

[math]=\dfrac {-\cos ^{2}\theta }{\cos \theta \sin \theta }=-\dfrac {\cos \theta }{\sin \theta }[/math]
 

となる。
 


[math]\begin{aligned}\dfrac {d^{2}y}{dx^{2}}=\dfrac {d}{d\theta }\left( \dfrac {dy}{dx}\right) \cdot \dfrac {d\theta }{dx}\end{aligned}[/math]


上の式に当てはめて、2段階に分けて計算する。


[math]\begin{aligned}\dfrac {d}{d\theta }\left( \dfrac {dy}{dx}\right) =\dfrac {d}{d\theta }\left( \dfrac {-\cos \theta }{\sin \theta }\right) =\dfrac {1}{\sin ^{2}\theta }\end{aligned}[/math]


[math]\begin{aligned}\dfrac {d^{2}y}{dx^{2}}=\dfrac {1}{\cos \theta \cdot \sin ^{2}\theta }\end{aligned}[/math]

 
 

[math]\theta =\dfrac {\pi }{3}\\ [/math]
 

を上の式に代入すると

 

[math]\begin{aligned}\dfrac {1}{\dfrac {1}{2}\times \left( \dfrac {\sqrt {3}}{2}\right) ^{2}}=\dfrac {8}{3}\end{aligned}[/math]

 

 

 

 

参考事項

[math]
\dfrac {d^{2}y}{dx^{2}}=\dfrac {d}{dx}\left( \dfrac {y'\left( \theta \right) }{x'\left( \theta \right) }\right) \dfrac {1}{x'\left( \theta \right) }
[/math]

[math]
=\dfrac {y''\left( \theta \right) x'\left( \theta \right) -y'\left( \theta \right) x''\left( \theta \right) }{\left( x'\left( \theta \right) \right) ^{2}}\cdot \dfrac {1}{x'\left( \theta \right) }[/math]

[math]
=\dfrac {y''\left( \theta \right) x'\left( \theta \right) -y'\left( \theta \right) x''\left( \theta \right) }{\left( x'\left( \theta \right) \right) ^{3}}
[/math]

上の式に代入してもよい。

 

同じカテゴリー「数検1級の微分」の一覧

微分17(2変数関数のマクローリン展開)

  2変数のマクローリンの定理   [math]Df=\left( h\dfrac{\partial }{\partial x}+k\dfrac{\partial }{\parti […]

記事の続きを読む

微分16の解説(全微分)

  [math]z=e^{2x^{2}}\cos 4y^{2}[/math] を全微分を求める。         全微分は [math]dz=\dfr […]

記事の続きを読む

微分15の解説(2階偏微分)

    [math]x^{2}+y^{2}+z^{2}+2x+2y+2z=0[/math] のとき [math]\dfrac {\partial ^{2}z}{\partial ^ […]

記事の続きを読む

微分14の解説(3元2階偏導関数)

  [math]w=\log _{e}\left( x^{2}+y^{2}+z^{2}\right)[/math] に対して、     [math]\dfrac {\pa […]

記事の続きを読む

微分13の解説(接面方程式)

  曲線 [math]z=\tan ^{-1}\dfrac {y}{x}[/math]([math]x\neq 0[/math])は [math]( -\dfrac {\pi }{2}&lt […]

記事の続きを読む

Copyright© 2024 数学検定1級の壁

ページトップ