次の式の分母の有理化をします。
[math]\dfrac {\sqrt {2}}{1+\sqrt {2}+\sqrt {3}}[/math]
[math]\dfrac {\sqrt {2}}{1+\sqrt {2}+\sqrt {3}}\times\dfrac {\left( 1+\sqrt {2}-\sqrt {3}\right) }{\left( 1+\sqrt {2}-\sqrt {3}\right) }=\dfrac {\sqrt {2}\left( 1+\sqrt {2}-\sqrt {3}\right) }{\left( 1+\sqrt {2}\right) ^{2}-3}[/math]
[math]= \dfrac {\sqrt {2}\left( 1+\sqrt {2}-\sqrt {3}\right) }{2\sqrt {2}}= \dfrac {1+\sqrt {2}-\sqrt {3}}{2}[/math]
答え [math]\dfrac {1+\sqrt {2}-\sqrt {3}}{2}[/math]
同じカテゴリー「数検1級の式・方程式など」の一覧
[math]a^{3}+b^{3}+c^{3}-3abc=\left( a+b+c\right) \left( a^{2}+b^{2}+c^{2}-cb-bc-ca\right)[/ma […]
[math]\sqrt [3] {6+\sqrt {\dfrac {980}{27}}}+\sqrt [3] {6-\sqrt {\dfrac {980}{27}}}[/math] & […]
[math]\left( x+y+z\right) \left( -x^{2}-y^{2}-z^{2}+2xy+2yz+2zx\right) -8xyz[/math] を因 […]
[math]\left( 1-\sqrt [3] {2}+\sqrt [3] {4}\right) ^{3}[/math] を簡単にする。 &n […]
[math]xy\left( x^{2}-y^{2}\right) +yz\left( y^{2}-z^{2}\right) +zx\left( z^{2}-x^{2}\r […]