[math]w=\log _{e}\left( x^{2}+y^{2}+z^{2}\right)[/math] に対して、
[math]\dfrac {\partial ^{2}w}{\partial x^{2}}+\dfrac {\partial ^{2}w}{\partial y^{2}}+\dfrac {\partial ^{2}w}{\partial z^{2}}[/math] の次の計算をします。
[math]\dfrac {\partial w}{\partial x}=\dfrac {2x}{\left( x^{2}+y^{2}+z^{2}\right) }[/math]
[math]\dfrac {\partial ^{2}w}{\partial x^{2}}=\dfrac {2\left( x^{2}+y^{2}+z^{2}\right) -2x\cdot 2x}{\left( x^{2}+y^{2}+z^{2}\right) ^{2}}=\dfrac {2\left( -x^{2}+y^{2}+z^{2}\right) }{\left( x^{2}+y^{2}+z^{2}\right) ^{2}}[/math]
同様に [math]\dfrac {\partial ^{2}w}{\partial y^{2}},\dfrac {\partial ^{2}w}{\partial z^{2}}[/math] を計算すると
[math]\dfrac {\partial ^{2}w}{\partial y^{2}}=\dfrac {2\left( x^{2}-y^{2}+z^{2}\right) }{\left( x^{2}+y^{2}+z^{2}\right) ^{2}}[/math]
[math]\dfrac {\partial ^{2}w}{\partial z^{2}}=\dfrac {2\left( x^{2}+y^{2}-z^{2}\right) }{\left( x^{2}+y^{2}+z^{2}\right) ^{2}}[/math]
[math]\dfrac {\partial ^{2}w}{\partial x^{2}}+\dfrac {\partial ^{2}w}{\partial y^{2}}+\dfrac {\partial ^{2}w}{\partial z^{2}}=\dfrac {2\left( x^{2}+y^{2}+z^{2}\right) }{\left( x^{2}+y^{2}+z^{2}\right) ^{2}}[/math]
[math]\dfrac {2}{x^{2}+y^{2}+z^{2}}[/math]・・・答え
同じカテゴリー「数検1級の微分」の一覧
2変数のマクローリンの定理 [math]Df=\left( h\dfrac{\partial }{\partial x}+k\dfrac{\partial }{\parti […]
[math]x^{2}+y^{2}+z^{2}+2x+2y+2z=0[/math] のとき [math]\dfrac {\partial ^{2}z}{\partial ^ […]
[math]w=\log _{e}\left( x^{2}+y^{2}+z^{2}\right)[/math] に対して、 [math]\dfrac {\pa […]
曲線 [math]z=\tan ^{-1}\dfrac {y}{x}[/math]([math]x\neq 0[/math])は [math]( -\dfrac {\pi }{2}< […]