[math]\int ^{\infty }_{0}\dfrac {1}{\left( x^{2}+1\right) ^{4}}dx[/math] を求める。
[math]x=\tan \theta \Rightarrow x^{2}+1=\dfrac {1}{\cos ^{2}\theta } , dx=\dfrac {1}{cos^{2}\theta }[/math]
x:0→∞ θ:0→[math]\dfrac {\pi }{2}[/math]
[math]\int ^{\infty }_{0}\dfrac {1}{\left( x^{2}+1\right) ^{4}}dx=\int ^{\dfrac {\pi }{2}}_{0}\dfrac {\cos ^{8}\theta }{\cos ^{2}\theta }d\theta[/math]
[math]=\int ^{\dfrac {\pi }{2}}_{0}\cos ^{6}\theta d\theta =\dfrac {5}{6}\cdot \dfrac {3}{4}\cdot \dfrac {1}{2}\cdot \dfrac {\pi }{2}=\dfrac {5}{32}\pi[/math]・・・答え
参考事項
[math]I_{n}=\int ^{\dfrac {\pi }{2}}_{0}\cos ^{n}\theta d\theta[/math]
nが偶数のとき
[math]I_{n}=\dfrac {n-1}{n}\cdot \dfrac {n-3}{n-2}-\cdot \ldots \dfrac {1}{2}\cdot \dfrac {\pi }{2}[/math]
nが奇数のとき
[math]I_{n}=\dfrac {n-1}{n}\cdot \dfrac {n-3}{n-2}-\ldots \dfrac {6}{7}\cdot \dfrac {4}{5}\cdot \dfrac {2}{3}[/math]